Nutritional Ketosis and photobiomodulation remediate mitochondria warding off Alzheimer's disease in a diabetic, ApoE4+ patient with mild cognitive impairment: A case report

Abstract

Alzheimer's Disease (AD) is a neurodegenerative progressive disorder for which there is currently no cure. Recent research demonstrates a robust correlation between type-2 diabetes mellitus (T2DM) and the development of MCI and AD, now referred to as type-3 diabetes. Both AD and T2DM, as metabolic pathologies, can be traced to the level of mitochondrial function. The metabolic hypothesis suggests that the cause of AD might be rooted in mitochondrial dysfunction accompanied by fuel shortage in the brain. Although glucose is known to be the deferred source of fuel for cells, ketone bodies have been observed to provide metabolically compromised brain cells with an alternative fuel source, bypassing deficiencies in GLUT transport due to increased insulin resistance. By keeping glucose and insulin levels low to allow for the production of ketones, there is evidence that mitochondrial function will be restored and cognition/memory improved. Further, visible red or near-infrared (NIR) light has been shown to heal and stimulate damaged tissue by interacting with the mitochondria to restore function. This case study evaluates the effects of a 10-week clinically prescribed ketogenic nutrition protocol combined with transcranial photobiomodulation (PBM) with a 59-year-old male, heterozygous ApoE4 carrier, with a dual diagnosis of mild AD and an 11 year history of insulin dependent type 2 diabetes (T2DM). Statistically significant results reflect an 83% reduction in HOMA-IR; 64% decrease in the triglyceride/HDL ratio; HgA1c reduction from 9.44% to 6.4%; 57% decrease in VLDL and triglycerides; and normalized cognition as measured via the MoCA (Montreal Cognitive Assessment), 26/30 post intervention.

Keywords: Alzheimer’s disease (AD); ApoE4; Inverse; T2DM; Warburg Effect; astrocyte-neuron lactate shuttle (ANLS); ketogenic diet; lactate dehydrogenase (LDHA/B); mTOR; photobiomodulation (PBM).