Simultaneous Treatment of Photobiomodulation and Demineralized Bone Matrix With Adipose-Derived Stem Cells Improve Bone Healing in an osteoporotic bone defect

Introduction: The ability of simultaneous treatment of critical-sized femoral defects (CSFDs) with photobiomodulation (PBM) and demineralized bone matrix (DBM) with or without seeded adipose-derived stem cells (ASCs) to induce bone reconstruction in ovariectomized induced osteoporotic (OVX) rats was investigated. Methods: The OVX rats with CSFD were arbitrarily separated into 6 groups: control, scaffold (S, DBM), S + PBM, S + alendronate (ALN), S + ASCs, and S + PBM + ASCs. Each group was assessed by cone beam computed tomography (CBCT) and histological examinations. Results: In the fourth week, CBCT and histological analyses revealed that the largest volume of new bone formed in the S + PBM and S + PBM + ASC groups. The S + PBM treatment relative to the S and S + ALN treatments remarkably reduced the CSFD (Mann-Whitney test, P = 0.009 and P = 0.01). Furthermore, S + PBM + ASCs treatment compared to the S and S + ALN treatments significantly decreased CSFD (Mann Whitney test, P = 0.01). In the eighth week, CBCT analysis showed that extremely enhanced bone regeneration occurred in the CSFD of the S + PBM group. Moreover, the CSFD in the S + PBM group was substantially smaller than S, S + ALN and S + ASCs groups (Mann Whitney test, P = 0.01, P = 0.02 and P = 0.009).