Abstract
Bone morphogenetic proteins (BMPs) are secreted signaling molecules belonging to the transforming growth factor-beta (TGF-beta) superfamily. The objective of this study was to determine how gallium-aluminum-arsenium (GaAlAs) 650 nm laser influenced the action of BMPs on bone defects created in rat femurs. The sample consisted of 24 male albino Wistar rats. Group 1 was composed of rats with bone defects filled with bone-inducing substance, with the application of low-power laser. Group 2 contained rats with bone defects filled with a bone-inducing substance, without the application of low-power laser. Group 3 rats had bone defects not filled with a bone-inducing substance, with the application of low-power laser. Group 4 rats had bone defects and no treatment (control group). A bone defect was produced with drills. In groups 1 and 2 the defects were filled with a bone-inducing substance. The animals were treated with GaAlAs (50 mW) laser, energy density 4 J/cm(2), for 80 ss on a 1 cm(2) area. Groups 2 and 4 were used as control. Bone samples were removed for histological procedures and morphometric analysis on the 7th, 14th and 21st days after surgery. Results obtained were subjected to statistical analysis. Rejection level for the null hypothesis was 0.05. Statistical differences were found in the comparison between group 1 (G1), G2, G3 and G4 [analysis of variance (ANOVA); P < 0.0134]. There was a statistically significant correlation between groups 1 and 4 (P < 0.01). The results of other correlations by Tukey's post-hoc test were: group 1 vs group 3 (P = 0.341), group 1 vs group 2 (P = 0.862), group 2 vs group 4 (P = 0.061), group 2 vs group 3 (P = 0.744), and group 3 vs group 4 (P = 0.249). We concluded that the association of low-power laser with a bone-inducing substance produced better results than when low-power laser or BMPs were used alone.