Abstract
The present in vitro study was conducted to investigate the effect of low-level laser (LLL) radiation and doxycycline on the levels of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) derived from MG-63 osteosarcoma cell line. MG-63 cells were divided into four groups. In the first group, 2 mg/mL of doxycycline was injected into the cell culture medium. Diode laser (810 nm, 100 mw, 75 s) was radiated to the culture medium of the second group. The third group received both doxycycline and laser radiation. In the fourth group (control), the culture medium was replaced daily, similar to the above three groups. Mentioned interventions were performed once a day for 4 consecutive days. Then, on the sixth day, the levels of OPG and RANKL mediators were measured using real-time polymerase chain reaction by isolating the cells from the samples. OPG expression had the highest to lowest levels in the laser + doxycycline, doxycycline, laser, and control groups, respectively. The level of OPG was significantly different between all the study groups (p < 0.05) except in the doxycycline + laser and doxycycline groups (p = 0.061). The highest to lowest levels of RANKL was observed in the doxycycline, laser + doxycycline, control, and laser groups, respectively. The RANKL expression was not significantly different between all the study groups (p > 0.05). The results of this study revealed that LLL and doxycycline reduced the RANKL/OPG ratio derived from the MG-63 osteosarcoma cell line, which may result in the diminished activity of osteoclasts and osteoclastogenesis.